Exercise 2.4.4

Explicitly show that there are no negative eigenvalues for

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi \quad \text { subject to } \quad \frac{d \phi}{d x}(0)=0 \quad \text { and } \quad \frac{d \phi}{d x}(L)=0 .
$$

Solution

Suppose that λ is negative: $\lambda=-\beta^{2}$. Then the ODE for ϕ becomes

$$
\frac{d^{2} \phi}{d x^{2}}=\beta^{2} \phi .
$$

The general solution is written in terms of hyperbolic cosine and hyperbolic sine.

$$
\phi(x)=C_{1} \cosh \beta x+C_{2} \sinh \beta x
$$

Take a derivative of it.

$$
\phi^{\prime}(x)=\beta\left(C_{1} \sinh \beta x+C_{2} \cosh \beta x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& \phi^{\prime}(0)=\beta\left(C_{2}\right)=0 \\
& \phi^{\prime}(L)=\beta\left(C_{1} \sinh \beta L+C_{2} \cosh \beta L\right)=0
\end{aligned}
$$

The first equation implies that $C_{2}=0$, which means the second equation reduces to $\beta\left(C_{1} \sinh \beta L\right)=0$. Because hyperbolic sine is not oscillatory, the only way $\beta\left(C_{1} \sinh \beta L\right)=0$ is satisfied is if $C_{1}=0$. The trivial solution $\phi(x)=0$ is obtained, so there are no negative eigenvalues.

